Maximum Pressure Policies in Stochastic Processing Networks
نویسندگان
چکیده
Complex systems like semiconductor wafer fabrication facilities (fabs), networks of data switches, and large-scale call centers all demand efficient resource allocation. Deterministic models like linear programs (LP) have been used for capacity planning at both the design and expansion stages of such systems. LP-based planning is critical in setting a medium range or long-term goal for many systems, but it does not translate into a day-to-day operational policy that must deal with discreteness of jobs and the randomness of the processing environment. A stochastic processing network, advanced by J. Michael Harrison (2000, 2002, 2003), is a system that takes inputs of materials of various kinds and uses various processing resources to produce outputs of materials of various kinds. Such a network provides a powerful abstraction of a wide range of real-world systems. It provides high-fidelity stochastic models in diverse economic sectors including manufacturing, service, and information technology. We propose a family of maximum pressure service policies for dynamically allocating service capacities in a stochastic processing network. Under a mild assumption on network structure, we prove that a network operating under a maximum pressure policy achieves maximum throughput predicted by LPs. These policies are semilocal in the sense that each server makes its decision based on the buffer content in its serviceable buffers and their immediately downstream buffers. In particular, their implementation does not use arrival rate information, which is difficult to collect in many applications. We also identify a class of networks for which the nonpreemptive, non-processor-splitting version of a maximum pressure policy is still throughput optimal. Applications to queueing networks with alternate routes and networks of data switches are presented.
منابع مشابه
Asymptotic Optimality of Maximum Pressure Policies in Stochastic
We consider a class of stochastic processing networks. Assume that the networks satisfy a complete resource pooling condition. We prove that each maximum pressure policy asymptotically minimizes the workload process in a stochastic processing network in heavy traffic. We also show that, under each quadratic holding cost structure, there is a maximum pressure policy that asymptotically minimizes...
متن کاملHeavy traffic analysis of maximum pressure policies for stochastic processing networks with multiple bottlenecks
A class of open processing networks operating under a maximum pressure policy is considered in the heavy traffic regime. We prove that the diffusion-scaled workload process for a network with several bottleneck resources converges to a semimartingale reflecting Brownian motion (SRBM) living in a polyhedral cone. We also establish a state space collapse result that the queue length process can b...
متن کاملConference on Stochastic Processing Networks
Speaker: Jim Dai Title: Maximum Pressure Policies in Stochastic Processing Networks Abstract: Stochastic processing networks have been introduced in a series of three papers by Harrison (2000, 2002, 2003). These networks are much more general than multi-class queueing networks. The added generality allows one to model skill-based routing in call centers, operator-machine interactions in semicon...
متن کاملH∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks
Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...
متن کاملExpected Duration of Dynamic Markov PERT Networks
Abstract : In this paper , we apply the stochastic dynamic programming to approximate the mean project completion time in dynamic Markov PERT networks. It is assumed that the activity durations are independent random variables with exponential distributions, but some social and economical problems influence the mean of activity durations. It is also assumed that the social problems evolve in ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Operations Research
دوره 53 شماره
صفحات -
تاریخ انتشار 2005